Efficient total domination in digraphs
نویسنده
چکیده
We generalize the concept of efficient total domination from graphs to digraphs. An efficiently total dominating set X of a digraph D is a vertex subset such that every vertex of D has exactly one predecessor in X . We study graphs that permit an orientation having such a set and give complexity results and characterizations concerning this question. Furthermore, we study the computational complexity of the (weighted) efficient total domination problem for several digraph classes. In particular we deal with most of the common generalizations of tournaments, like locally semicomplete and arc-locally semicomplete digraphs.
منابع مشابه
Efficient open domination in digraphs
Let G be a digraph. A set S ⊆ V (G) is called an efficient total dominating set if the set of open out-neighborhoods N−(v) ∈ S is a partition of V (G). We say that G is efficiently open-dominated if both G and its reverse digraph G− have an efficient total dominating set. Some properties of efficiently open dominated digraphs are presented. Special attention is given to tournaments and directed...
متن کاملDomination In The Cross Product Of Digraphs
In many papers, the relation between the domination number of a product of graphs and the product of domination numbers of factors is studied. Here we investigate this problem for domination and total domination numbers in the cross product of digraphs. We give analogues of known results for graphs, and we also present new results for digraphs with sources. Using these results we find dominatio...
متن کاملTwin minus domination in directed graphs
Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...
متن کاملTwin signed total Roman domatic numbers in digraphs
Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...
متن کاملDominance in a Cayley digraph and in its reverse
Let D be a digraph. Its reverse digraph, D−1, is obtained by reversing all arcs of D. We show that the domination numbers of D and D−1 can be different if D is a Cayley digraph. The smallest groups admitting Cayley digraphs with this property are the alternating group A4 and the dihedral group D6, both on 12 elements. Then, for each n ≥ 6 we find a Cayley digraph D on the dihedral group Dn such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Discrete Algorithms
دوره 15 شماره
صفحات -
تاریخ انتشار 2012